Loading...
アイコン

A Data Odyssey

チャンネル登録者数 6980人

2071 回視聴 ・ 74いいね ・ 2025/03/31

🚀 Course 🚀
Free: adataodyssey.com/xai-for-cv/
Paid: adataodyssey.com/courses/xai-for-cv/

Gradient-weighted Class Activation Mapping (Grad-CAM) is an explainable AI (XAI) method that highlights which parts of an image influenced an AI model’s decision. By generating a heatmap, it reveals how convolutional neural networks (CNNs) "see" images, making deep learning models used for medical diagnostics, autonomous driving, and image recognition more transparent and interpretable.

In this lesson, we’ll break down:
✅ The theory behind Grad-CAM
✅ Visualizations and the math behind the method
✅ Intuition on why CAM-based approaches work
✅ Advantages & limitations of Grad-CAM

🚀 Useful playlists 🚀
XAI for CV:    • XAI for CV  
XAI:    • Explainable AI (XAI)  
SHAP:    • SHAP  
Algorithm fairness:    • Algorithm Fairness  

🚀 Get in touch 🚀
Medium: conorosullyds.medium.com/
Bluesky: bsky.app/profile/conorosullyds.bsky.social
Threads: www.threads.net/@conorosullyds
Website: adataodyssey.com/

🚀 Chapters 🚀
00:00 Introduction
02:07 Theory
06:47 Maths formula
08:08 Intuition
10:36 Advantages and lim

コメント

コメントを取得中...

コントロール
設定

使用したサーバー: direct